Uniformity in the Polynomial Wiener-wintner Theorem
نویسنده
چکیده
exists for every α ∈ R, where e(t) = e. What makes this a nontrivial strengthening of the Birkhoff ergodic theorem is that the set of full measure for which we have convergence does not depend on the choice of α ∈ R. Two different proofs of this theorem are based on the following results which are of interest on their own: (i) For ergodic systems, if f ∈ L(μ) and f ∈ E1(T ) , then for a.e. x ∈ X we have that for every α ∈ R
منابع مشابه
Wiener-wintner for Hilbert Transform
We prove the following extension of the Wiener–Wintner Theorem and the Carleson Theorem on pointwise convergence of Fourier series: For all measure preserving flows (X,μ, Tt) and f ∈ L(X,μ), there is a set Xf ⊂ X of probability one, so that for all x ∈ Xf we have lim s↓0 ∫ s<|t|<1/s e f(Tt x) dt t exists for all θ. The proof is by way of establishing an appropriate oscillation inequality which ...
متن کاملSome New Results On the Hosoya Polynomial of Graph Operations
The Wiener index is a graph invariant that has found extensive application in chemistry. In addition to that a generating function, which was called the Wiener polynomial, who’s derivate is a q-analog of the Wiener index was defined. In an article, Sagan, Yeh and Zhang in [The Wiener Polynomial of a graph, Int. J. Quantun Chem., 60 (1996), 959969] attained what graph operations do to the Wiene...
متن کاملHosoya polynomials of random benzenoid chains
Let $G$ be a molecular graph with vertex set $V(G)$, $d_G(u, v)$ the topological distance between vertices $u$ and $v$ in $G$. The Hosoya polynomial $H(G, x)$ of $G$ is a polynomial $sumlimits_{{u, v}subseteq V(G)}x^{d_G(u, v)}$ in variable $x$. In this paper, we obtain an explicit analytical expression for the expected value of the Hosoya polynomial of a random benzenoid chain with $n$ hexagon...
متن کاملThe Hyper-Wiener Polynomial of Graphs
The distance $d(u,v)$ between two vertices $u$ and $v$ of a graph $G$ is equal to the length of a shortest path that connects $u$ and $v$. Define $WW(G,x) = 1/2sum_{{ a,b } subseteq V(G)}x^{d(a,b) + d^2(a,b)}$, where $d(G)$ is the greatest distance between any two vertices. In this paper the hyper-Wiener polynomials of the Cartesian product, composition, join and disjunction of graphs are compu...
متن کاملContinuity of Eigenfunctions of Uniquely Ergodic Dynamical Systems and Intensity of Bragg Peaks
We study uniquely ergodic dynamical systems over locally compact, sigmacompact Abelian groups. We characterize uniform convergence in Wiener/Wintner type ergodic theorems in terms of continuity of the limit. Our results generalize and unify earlier results of Robinson and Assani respectively. We then turn to diffraction of quasicrystals and show how the Bragg peaks can be calculated via a Wiene...
متن کامل